
1FreeBSD Journal • November/December 2023

1 of 9

What Is a Web Hook And Why Would I Want One?
A web hook is an event-driven remote callback protocol over HTTP allowing scripts and

tasks to be trivially invoked from almost any programming language or tool.
What’s great about webhooks is their prevalence and their simplicity. With a simple HTTP

URL, you can request a remote server to dim the lights, deploy code, or run an arbitrary
command on your behalf.

The simplest of webhooks can just be a bookmarked link in a smart phone web browser,
or a more complicated version might require strong authentication and authorization.

While larger automation toolsets exist, such as Ansible
and Puppet, sometimes something simpler is sufficient.
Web hooks are just such a thing, allowing you to run a
task on a remote computer, on request, securely. Invok-
ing a web hook can be considered “kicking,” hence the
article title.

Integrations
There are no official standards yet, however com-

monly, webhooks are sent via POST with a JSON object
body, using TLS encryption, often secured with signa-
tures against tampering, network forgery, and replay at-
tacks.

Common integrations include Chat services such as
Mattermost, Slack, and IRC, software forges like Github
and Gitlab, generic hosted services like Zapier or IFTT,
and many home automation suites like Home Assistant as well. The sky’s the limit, as web
hooks are sent and received almost everywhere.

While you could write a minimal web hook client or server in an hour, there are many op-
tions already available in almost every programming language today. Chat software often
provides inbuilt webhook triggers that can be invoked by users, often by a /command style
syntax. IRC servers are not forgotten either, mostly via daemons or plugins.

One less obvious advantage for webhooks is the ability to demarcate security and privi-
leges. A low-privileged user can call a webhook on a remote system. The remote webhook
servce can run also at a low privilege, managing validation and basic syntax checking, before

BY DAVE COTTLEHUBER

Kick Me Now Kick Me Now
with Web Hookswith Web Hooks

With a simple HTTP URL,
you can request a remote
server to dim the lights,
deploy code, or run
an arbitrary command
on your behalf.

2FreeBSD Journal • November/December 2023

invoking a higher privilege task once the requirements have been verified. Perhaps the final
task has access to a privileged token that allows rebooting a service, deploying new code, or
letting the kids have another hour of screen time.

Common software forges such as GitHub, GitLab, and self hosted options also pro-
vide these such that they can be triggered including
the name of the branch, the commit, and the user who
made the change.

This allows, with relative ease, constructing tools that
update sites, reboot systems, or trigger more complicat-
ed toolchains as required.

The Architecture
The typical arrangement comprises a server listening

for incoming requests and a client that submits requests
along with some parameters, possibly including some
authentication and authorization.

The Server
First up, let’s discuss the server side. Typically, this will

be a daemon listening for an HTTP request that match-
es certain conditions for it to be processed. If these
conditions are not met, the request is rejected with the
appropriate HTTP status codes, and for a successful sub-
mission, parameters can be extracted from the approved request and then custom actions
are invoked as required.

The Client
As the server uses HTTP, almost any client can be used. cURL is a very popular choice,

but we will use a slightly more pleasant one called gurl which has built-in support for HMAC
signatures.

The Message
The message is typically a JSON object. For those who care about replay or timing at-

tacks, you should include a timestamp in the body, and validate it before further process-
ing. If your webhook toolkit can sign and validate specific headers, that’s an option also, but
most don’t.

The Security
The body of the HTTP request can be signed with a shared secret key, and this resulting

signature then provided as a message header. This provides both a means of authentication
and also proof that the request has not been altered in transit. It relies on a shared key to
enable both ends to verify the message signature independently using the additional HTTP
header with the body of the message.

The most common signature method is HMAC-SHA256. This is a combination of two
cryptographic algorithms — the familiar SHA256 hash algorithm that gives a secure digest

2 of 9

The body of the HTTP
request can be signed
with a shared secret key,
and this resulting
signature then provided
as a message header.

https://curl.se/
https://github.com/skunkwerks/gurl

3FreeBSD Journal • November/December 2023

of a larger message, in our case the HTTP body, and the HMAC algorithm, which takes a se-
cret key and mixes it with a message to produce a unique code, a digital signature, if you like.

These functions are combined to produce a high-integrity check if the message has
been tampered with. It’s like a digital seal over the contents and confirms that the message
must have been sent from a party that knows the shared secret.

Note that using both TLS encryption and a signature provides both confidentiality and
integrity of the enclosed message, but not availability. A well-positioned attacker could in-
terrupt or flood the intervening network and messages would be lost without notification.

Common practice is to include a timestamp in the body of the webhook, and as this is
covered by the HMAC signature, timing and replay attacks can be mitigated.

Note that a non-timestamped body will always have the same signature. This can be use-
ful. For example, this allows pre-calculation of the HMAC signature, and using an unchang-
ing HTTP request to trigger remote actions, without needing to make the HMAC secret
available on the system issuing the webhook request.

Putting it Together
We’ll install a few packages to help, a webhook server, the well-known tool curl, some

openssl and finally gurl, a tool that makes signing webhooks easy.

$ sudo pkg install -r FreeBSD www/webhook ftp/curl www/gurl

Let’s get our server up and running, with this minimal example, save it as webhooks.yaml.
It will use the logger(1) command to write a short entry into /var/log/messages with

the HTTP User-Agent header of the successful webhook.
Note that there is a trigger-rule key that ensures the HTTP query parameter, secret,

matches the word squirrel.
Currently we have no TLS security and no HMAC signature either, so this vis not a very

secure system yet.

- id: logger
 execute-command: /usr/bin/logger
 pass-arguments-to-command:
 - source: string
 name: ‘-t’
 - source: string
 name: ‘webhook’
 - source: string
 name: ‘invoked with HTTP User Agent:’
 - source: header
 name: ‘user-agent’
 response-message: |
 webhook executed
 trigger-rule-mismatch-http-response-code: 400
 trigger-rule:
 match:
 type: value

3 of 9

https://github.com/adnanh/webhook
https://github.com/skunkwerks/gurl

4FreeBSD Journal • November/December 2023

 value: squirrel
 parameter:
 source: url
 name: secret

And run webhook -debug -hotreload -hooks webhook.yaml in a terminal. The
flags used should be self-explanatory.

In another terminal, run tail -qF /var/log/messages | grep webhook so that we
can see the results in real time.

Finally, let’s kick the web hook using curl, first without the query parameter, and then
again, with it:

$ curl -4v http://localhost:9000/hooks/logger
* Trying 127.0.0.1:9000...
* Connected to localhost (127.0.0.1) port 9000
> GET /hooks/logger HTTP/1.1
> Host: localhost:9000
> User-Agent: curl/8.3.0
> Accept: */*
>
< HTTP/1.1 400 Bad Request
< Date: Fri, 20 Oct 2023 12:50:35 GMT|
< Content-Length: 30
< Content-Type: text/plain; charset=utf-8
<
* Connection #0 to host localhost left intact
Hook rules were not satisfied.

Note how the failed request is rejected using the HTTP status specified in the
webhooks.yaml config file and the returned HTTP body explains why.

Providing the required query and secret paramter:

$ curl -4v http://localhost:9000/hooks/logger?secret=squirrel
* Trying 127.0.0.1:9000...
* Connected to localhost (127.0.0.1) port 9000
> GET /hooks/logger?secret=squirrel HTTP/1.1
> Host: localhost:9000
> User-Agent: curl/8.3.0
> Accept: */*
>
< HTTP/1.1 200 OK
< Date: Fri, 20 Oct 2023 12:50:39 GMT
< Content-Length: 17
< Content-Type: text/plain; charset=utf-8
<
webhook executed
* Connection #0 to host localhost left intact

4 of 9

5FreeBSD Journal • November/December 2023

The hook is executed and we can see the result in syslog output.

Oct 20 12:50:39 akai webhook[67758]: invoked with HTTP User Agent: curl/8.3.0

Using HMACs to Secure Web Hooks
The HMAC signature described earlier, when applied over the HTTP body and sent as a

signature, is tamper-proof, providing authentication and integrity, but only of the body, not
of headers. Let’s implement that. Our first step is to generate a short secret and modify
webhook.yaml to require verification.

$ export HMAC_SECRET=$(head /dev/random | sha256)

We’ll use a more memorable secret of n0decaf one for this article, but you should use a
nice strong one.

Replace the webhook.yml file with this one, which will extract two JSON values from the
payload (which is signed, and therefore trusted), and pass them to our command for execu-
tion.

- id: echo
 execute-command: /bin/echo
 include-command-output-in-response: true
 trigger-rule-mismatch-http-response-code: 400
 trigger-rule:
 and:
 # ensures payload is secure -- headers are not trusted
 - match:
 type: payload-hmac-sha256
 secret: n0decaf
 parameter:
 source: header
 name: x-hmac-sig
 pass-arguments-to-command:
 - source: ‘payload’
 name: ‘os’
 - source: ‘payload’
 name: ‘town’

And use openssl dgst to calculate the signature over the body:

$ echo -n ‘{“os”:”freebsd”,”town”:”vienna”}’ \
 | openssl dgst -sha256 -hmac n0decaf
SHA2-256(stdin)= f8cb13e906bcb2592a13f5d4b80d521a894e0f422a9e697bc68bc34554394032

5 of 9

6FreeBSD Journal • November/December 2023

With the body and the signature, now let’s make the first signed request:

$ curl -v http://localhost:9000/hooks/echo \
 --json {“os”:”freebsd”,”town”:”vienna”} \
 -Hx-hmac-sig:sha256=f8cb13e906bcb2592a13f5d4b80d521a894e0f422a9e697bc68bc34554394032

* Trying [::1]:9000...
* Connected to localhost (::1) port 9000
> POST /hooks/echo HTTP/1.1
> Host: localhost:9000
> User-Agent: curl/8.3.0
> x-hmac-sig:sha256=f8cb13e906bcb2592a13f5d4b80d521a894e0f422a9e697bc68bc34554394032
> Content-Type: application/json
> Accept: application/json
> Content-Length: 32
>
< HTTP/1.1 200 OK
< Date: Sat, 21 Oct 2023 00:41:57 GMT
< Content-Length: 15
< Content-Type: text/plain; charset=utf-8
<
freebsd vienna
* Connection #0 to host localhost left intact

On the server side with -debug mode running:

[webhook] 2023/10/21 00:41:57 [9d5040] incoming HTTP POST request from [::1]:11747
[webhook] 2023/10/21 00:41:57 [9d5040] echo got matched
[webhook] 2023/10/21 00:41:57 [9d5040] echo hook triggered successfully
[webhook] 2023/10/21 00:41:57 [9d5040] executing /bin/echo (/bin/echo) with arguments [“/
bin/echo” “freebsd” “vienna”] and environment [] using as cwd
[webhook] 2023/10/21 00:41:57 [9d5040] command output: freebsd vienna

[webhook] 2023/10/21 00:41:57 [9d5040] finished handling echo
< [9d5040] 0
< [9d5040]
< [9d5040] freebsd vienna
[webhook] 2023/10/21 00:41:57 [9d5040] 200 | 15 B | 1.277959ms | localhost:9000 | POST /
hooks/echo

Separately calculating the signature each time is error-prone. gurl is a fork of an earlier
project and adds automatic HMAC generation as well as some niceties around handling and
processing JSON.

The signature type, and the signature header name are prepended to the secret and
joined by :. This is exported as an environment variable so that its not directly visible in shell
history.

6 of 9

https://github.com/skunkwerks/gurl

7FreeBSD Journal • November/December 2023

$ export HMAC_SECRET=sha256:x-hmac-sig:n0decaf
$ gurl -json=true -hmac HMAC_SECRET \
 POST http://localhost:9000/hooks/echo \
 os=freebsd town=otutahi

POST /hooks/echo HTTP/1.1
Host: localhost:9000
Accept: application/json
Accept-Encoding: gzip, deflate
Content-Type: application/json
User-Agent: gurl/0.2.3
X-Hmac-Sig: sha256=f634363faff03deed8fbcef8b10952592d43c8abbb6b4a540ef16af0acaff172

{“os”:”freebsd”,”town”:”otutahi”}

As we can see above, the signature is generated for us, and adding JSON key=value pairs
is straightforward without needing quoting and escaping.

Back comes the response, pretty-printed for us: the HMAC has been verified by the serv-
er, the values of the two keys extracted and passed as parameters to our echo command,
and the results captured and returned in the HTTP response body.

HTTP/1.1 200 OK
Date : Sat, 21 Oct 2023 00:50:25 GMT
Content-Length : 16
Content-Type : text/plain; charset=utf-8

freebsd otutahi

More complex examples are provided in the port’s sample webhook.yaml or the exten-
sive documentation.

Securing Web Hook Contents
While using HMACs prevents tampering with the message body, it’s still visible in plain

text to those dastardly hackers.
Let’s add some transport-layer security, using a self-signed TLS key and certificate, for

the webhooks server on localhost and relaunch the webhook server:

$ openssl req -newkey rsa:2048 -keyout hooks.key \
 -x509 -days 365 -nodes -subj ‘/CN=localhost’ -out hooks.crt

$ webhook -debug -hotreload \
 -secure -cert hooks.crt -key hooks.key \
 -hooks webhook.yaml

7 of 9

https://cgit.freebsd.org/ports/tree/www/webhook/files/webhook.yaml
https://github.com/adnanh/webhook/tree/master/docs
https://github.com/adnanh/webhook/tree/master/docs

8FreeBSD Journal • November/December 2023

The curl command will need an additional -k parameter to ignore our self-signed certif-
icate, but otherwise things proceed as before:

curl -4vk https://localhost:9000/hooks/logger?secret=squirrel

* Trying 127.0.0.1:9000...
* Connected to localhost (127.0.0.1) port 9000
* ALPN: curl offers h2,http/1.1
* TLSv1.3 (OUT), TLS handshake, Client hello (1):
* TLSv1.3 (IN), TLS handshake, Server hello (2):
* TLSv1.3 (OUT), TLS change cipher, Change cipher spec (1):
* TLSv1.3 (OUT), TLS handshake, Client hello (1):
* TLSv1.3 (IN), TLS handshake, Server hello (2):
* TLSv1.3 (IN), TLS handshake, Encrypted Extensions (8):
* TLSv1.3 (IN), TLS handshake, Certificate (11):
* TLSv1.3 (IN), TLS handshake, CERT verify (15):
* TLSv1.3 (IN), TLS handshake, Finished (20):
* TLSv1.3 (OUT), TLS handshake, Finished (20):
* SSL connection using TLSv1.3 / TLS_AES_128_GCM_SHA256
* ALPN: server accepted http/1.1
* Server certificate:
* subject: CN=localhost
* start date: Oct 20 13:05:09 2023 GMT
* expire date: Oct 19 13:05:09 2024 GMT
* issuer: CN=localhost
* SSL certificate verify result: self-signed certificate (18), continuing anyway.
* using HTTP/1.1
> GET /hooks/logger?secret=squirrel HTTP/1.1
> Host: localhost:9000
> User-Agent: curl/8.3.0
> Accept: */*
>
* TLSv1.3 (IN), TLS handshake, Newsession Ticket (4):
< HTTP/1.1 200 OK
< Date: Fri, 20 Oct 2023 13:12:07 GMT
< Content-Length: 17
< Content-Type: text/plain; charset=utf-8
<
webhook executed
* Connection #0 to host localhost left intact

gurl has no such option and expects you to do things properly. For production usage, it is
much better to use a reverse proxy such as nginx or haproxy to provide robust TLS termina-
tion, and allows using public TLS certificates, via Let’s Encrypt and similar services.

8 of 9

https://github.com/skunkwerks/gurl
https://nginx.org/
https://haproxy.org/

9FreeBSD Journal • November/December 2023

Updating a Website with Github and Webhooks
For this to work successfully, you’ll need both to have your own domain and a small serv-

er or virtual machine to host the daemon on.
This article can’t cover the full details for setting up your own website, TLS encryption

certificates, it just covers the gist of what’s required. The steps will largely be similar for any
software forge.

DAVE COTTLEHUBER has spent the last 2 decades trying to stay at least 1 step ahead of
The Bad Actors on the internet, starting off with OpenBSD 2.8, and the last 9 years with
FreeBSD since 9.3, where he has a ports commit bit, and a prediliction for using jails, and ob-
scure functional programming languages that align with his enjoyment of distributed sys-
tems, and power tools with very sharp edges.

•	Professional Yak Herder, shaving BSD-coloured yaks since ~ 2000
•	FreeBSD ports@ committer
•	Ansible DevOops master
•	Elixir developer
•	Building distributed systems with RabbitMQ and Apache CouchDB
•	Enjoys telemark skiing, and playing celtic folk music on a variety of instruments

9 of 9

