) active.collab

Kanban

A Quick and Easy
Guide to Kickstart Your Project

How to implement Kanban in software development
Useful tips for organizing projects
Bug tracking workflow... and more.

CONTENTS

3 Introduction to Agile

4 Going Agile
5 Kanban Basics
8 Getting Started With Kanban

1 O Structuring Your Work

11 Labels

12 Filters

13 Columns

16 Priority

18 Bottlenecks
19 Tracking Time
20 Reports

21 Bug Tracking

2 3 People on the Project

24 Client
25 Developer
26 Manager

Copyright © 2015 by A51

Allrights reserved. No part of this book may be reproduced in any
manner without written permission. except in the case of brief
quotations included in critical articles and reviews. For information.
please contact the author.

If you’re in IT, you've probably lived through this: clients demand last
minute changes on a tight budget, you don’t know what the other
developers are doing, your work keeps overlapping, and you wonder how

they come up with those unrealistic estimates.

And you've probably heard of a solution called Kanban, maybe even
moved a few tasks in columns. That might have seemed too simple and
didn't work that great - or you came across a 500-page book which

made it sound really complicated.

This a quick read. By the time finish, you'll have a basic understanding
of Kanban - and more importantly, how to start using it. We focus on
the practical part, write from our own experience, and show you how to

avoid some common pitfalls.

Everything you read here, you can apply right now in ActiveCollab and

start managing your projects more efficiently.

GOING AGILE

When starting a new project, the traditional way was: gather a team,
book a conference room, and plan the whole project upfront. If
something changes, you're in trouble - and in software development,

that “something” changes all the time.

This called for a new project management philosophy, one that
embraces the shifting nature of project requirements - and so Agile was
born. Instead of coming up with a BIG plan and hoping nothing
unexpected happens, Agile allows you to change a project’s direction on

the go.

Let's compare the two approaches on a website redesign project:

The Traditional (Waterfall) Approach

You first plan everything— every color, button, expected
user behaviour —and then start working. You work step
by step and deliver when you’re done. The client sees
progress only when you hit a milestone. You stick to the
plan because you’ve already agreed on all the details. If
the client doesn’t like the layout at the end, you have to
do a lot of backtracking, without being able to charge your

client for the extra work.

The Agile Approach

You get feedback early in the development. You see
how the client responds and make adjustments on the
go. Again, and again —each adjustment gets you
closer to the finish. If the client doesn’t like the
layout, you can change it early on without losing time

and money on dead ends.

The Agile approach consists of many overlapping methodologies and

Kanban is one of them.

KANBAN BASICS

Kanban is a Japanese word which roughly translates to “a card you can
see”. Basically, you organize tasks as cards on a board (or in a software).

You then track progress by moving them across different columns.

Let's say you’re developing a mobile app. You create several columns in
the project: TO-DO, IN PROGRESS, REVIEW, DONE. Then you create and
put all the tasks in the TO-DO column (eg. create a wireframe, design

icon packs, write API calls, choose fonts and colors, fix loading bug).

When you start working on the wireframe, you move the card to the IN
PROGRESS column. When it’s finished, it goes to REVIEW. The client
can see what’s in REVIEW and give feedback. If it’s good, you move it to
DONE —if not, the card goes back to IN PROGRESS.

A common way to organize projects is by task types (like DESIGN,
DEVELOPMENT), but that's not appropriate in Kanban because a task
can't travel from one column to another. For example, a task like
"Export hi-res logo" in DESIGN task list can't travel to DEVELOPMENT
task list. But a feature request like "Put number of active users on admin
dashboard" can travel from BACKLOG to DEVELOP to REVIEW.

As you can see, Kanban is very simple to use. It’s applied in logistics,

software development, and even as a productivity method to organize

personal tasks.

TASK LIST IN PROGRESS

PUSH VS. PULL

Most project management uses the push principle - a project manager
creates a master plan and tells everyone on the team what to do. This
can be inefficient because the manager can’t know who's the best for a
task (no matter how well they know the team).

But Kanban operates on the pull principle - team members get to choose
the tasks themselves. The best person for the job will pluck it personally
from the backlog. This way, they’re empowered, own the work, and are
more motivated to finish it. And when they finish, they won't sit idly
but jump on the next task they feel comfortable with.

TASK LIST IN PROGRESS

KANBAN BENEFITS

NEED TO BE
DONE

Flexible planning

You put everything that needs to be done in one column,
and then decide what to work on. You don’t have to lose
time categorizing the tasks, just put them all in the
backlog. If a task becomes urgent, you can always
schedule it as the next one in the pipeline - this is
different from Scrum where you only work on tasks that

are scheduled for the current sprint.

Clear focus

When you multitask, your productivity drops down by
40% and you do shoddy work. With Kanban, you limit the
number of things you work on so you don't get swamped.
Then you can focus on getting the task done and not

subconsciously worry about other tasks.

Work satisfaction

You don't force developers to work on things that get
arbitrarily assigned (as far as they know), but let them
choose the tasks and be more motivated to work. Plus,
people get credit for what they do, can set the pace
themselves, make better estimates, and accomplish

more.

Transparency

Tracking progress is easy and your meetings are more
efficient. You can decide how many tasks can
simultaneously be at any stage, and divert more resources
to bottlenecks if needed. Also, you’ll always know what's

next for the release.

GETTING STARTED WITH KANBAN

All you need is a big board that everyone on your team can see and
pin cards to. But in this book, we are relying on Active Collab
because it makes the process more efficient with features like
@mentions, notifications, labels, assignees, due dates, filters, and
more.

1 To get started, create a new project and add four task lists: TO-DO,
IN PROGRESS, REVIEW, and DONE.

2 Next, add everything that needs to be done in the TO-DO column.

Decide who’ll be in charge of what, who’ll do the reviewing, and how
you'll notify each other.

4 Let your team pick their tasks and move them to IN PROGRESS once
they’ve started working.

5 If someone needs to know about updates on a task, you can subscribe
them so they’re notified about each update.

When you finish, move the task to the REVIEW column. If you're in
a hurry, you can @mention the person who needs to do the review,
or wait for them to check the column themselves when they have time.

7 If the work is good and the task passes review, it can be moved to
DONE. If it needs more work, the reviewer moves it back to the IN
PROGRESS column and writes what needs more grease in the comments
section.

TO-DO IN PROGRESS REVIEW DONE

Before applying Kanban to your existing projects, try something smaller

first. A team should set up a simple project, experiment, figure out the

best workflow - and spread it.

Whenever a card gets moved, you can see it in Active Collab's Activity

page too. This is useful for seeing what happened on a project since the

last time you logged in, or on a specific date.

11519

10:49

10:19

09:49

09:19

08:49

John moved the task Project counter to the task list Review

Alex moved the task Cron settings frontend to the task list Done

Kim moved the task Design counter to the task list UI

Sale J. moved the task Api settings design to the task list Done

Djordje B. moved the task Project name caps to the task list Review

Sale J. moved the task QA test env to the task list Done

In Active Collab, every task has a name, an assignee, and a due date. But
those three parameters aren’t enough to stay organized, especially

when it comes to complex projects.

Use labels to enrich tasks with more information so you can later
organize them more efficiently. Then you can use filters to see only the
tasks that meet a certain criteria (eg. see all the tasks that are due next

week, or all the bugs that need fixing).

Keep track of task progress by using task lists/columns. All tasks start in
the backlog and move through different phases until they get
completed. To decide on which tasks to work on, you need to determine

each task’s priority, and labels can help here.

All tasks require time, the scarcest resource on the market. Time
determines how much better your app can be and how much you can
charge for your work. That’s why you should track how much time you
spend on each task. Later, you can run reports and see how efficient you
were. Also, because Kanban task management is so visual, spotting

bottlenecks is very easy.

Kanban is useful for bug tracking also, so we included our own workflow

at the end of the chapter.

LABELS

Some tasks are more important than others, but require more time.

Labels are useful for denoting values like business importance, type of

work, complexity, or anything else.

50, 100, 200, 300, 500, 1000

BUG

FEATURE

IMPROVMENT

. SECURITY

S, M, L XL

Business importance

Indicates the importance a task carries for your client so
you can keep their business. Fixing an obscure bug may
not be that important, but a special report generator is a

deal breaker for some.

Type of work

Identifies what the user gets when you complete this. You
can just do bug fixing, but it won't make the software
noticeably better. But, you can't keep rolling out new
features if half of them don’t work. Also, don’t forget that
boring things like refactoring and code optimization are

also important and deserve their own task and time.

Complexity

Indicates how complex a task is and how much time it
needs. You can't work only on big features and ignore
simple things that contribute to customer satisfaction.
Easy wins are important for team motivation as well as

showing your clients that you’re worth their money.

Tip: use emoji characters next to labels to make them easier to spot.

FILTERS

Use filters to quickly find what you’re looking for. Later, you can batch
edit the tasks and apply different labels or change due dates.

Assignee

See how much work people on your team have - if it’s
A—— too much, it's a clear sign they need to stop taking on
too many responsibilities or you need a better task

distribution.

Due Date

If you filter all the tasks that are due next week, you
can create a meeting or talk personally with the
25 developers to see if they have any blockers that

prevent them from working on their tasks.

Label

You can use as many labels as you like. You can make
a whole suite of labels. Then finding tasks related to
Design or a top priority becomes easy. You can use

BUG

ez UALE different label colors so you don't mistakenly mark a

[MPROVEMENT

task both as a feature and as a bug.

For example, you can dedicate a whole week to just working on bugs and
removing them from the backlog before starting work on a newsome
feature. Just use the filter and pick the tasks. Or you can make a weekly

task quota: 10 bugs, 3 improvements , and 1 feature each week.

Assigned To Due On Labeled With

Anyone Any Time Any

COLUMNS

What kind of columns you use depends on your existing workflow, type
of work, and the structure of your team. It's best to keep it simple, but
you do have more control and cover more scenarios with more columns.

Here are some suggestions.

DESIGN

+ RESEARCH - gather the problems and requirements you need to solve.

- UX - work on converting those requirements to a concrete wireframe

or a sketch.

- REVIEW - the client is responsible to give you early feedback on the
design.

- IMPLEMENTATION - once you have a prototype, you can start coding or

creating a mockup .

« FINAL REVIEW - the client does one last review to decide whether the
work goes to DONE or back to IMPLEMENTATION, and you can now issue

an invoice for the task.

- DONE - useful for the client to see everything that’s finished.

RESEARCH UXx REVIEW IMPLEMENTATION FINAL REVIEW DONE

FREELANCING

+ PERSONAL BACKLOG - you can store errands and personal

appointments here so they don't get mixed with work.
+- WORK BACKLOG - everything that needs to be done starts here.

- THIS WEEK - you make a selection of what you'll work on during the
week from your backlog, so you have a rough plan what you can

accomplish and when.

- TODAY - everything you need to do on that day, once you wake up (you

can move tasks to this column the day before).

- DOING - task that are in progress right now (good for collaboration as

others can see what you're working on).

- ON HOLD - things that are not completed because you're waiting for
the input or a response, like a client sending you some file or paying an

invoice.

- DONE - you can also just mark the task as completed so it doesn’t

create clutter.

PERSONAL
BACKLOG

WORK BACKLOG THIS WEEK TODAY DOING ON HOLD DONE

SOFTWARE DEVELOPMENT

+ BACKLOG - all the user stories, bugs, requests, and improvements
start here. The product manager talks to the client, collects their
requests, and adds priorities and labels. Later, developers can assign

themselves to a task from the top of the priority list.
« NEXT - this is a selection of tasks for the next sprint.

+ SPRINT - this column has a start and end date, and all the tasks should
be completed by the sprint’s end date. If not, they’re given top priority
in the next one.

« IN DEVELOPMENT - lists all the tasks currently in progress, as well as
tasks that got returned from QA.

* QA - work that needs to be tested before it can be released. If it needs
more work, it goes back to IN DEVELOPMENT.

- CODE REVIEW - once a task passes testing, it’s good practice to have

someone else go through the code.

+ DOCUMENTATION - all the work needs to be documented and
communicated with the client before it can be released.

+ RELEASE - finished tasks end up here and can be marked as completed

after the sprint is over.

BACKLOG NEXT SPRINT IN DEVELOPMENT QA CODE REVIEW DOCUMENTATION RELEASE

PRIORITY

Deciding what to do next can be make or break a commercial software
product. Your competition can get ahead of you and provide users
exactly what they need and corner the market. No wonder "move fast

and break things" is the dominant mantra in IT.

But this also applies to consulting agencies that develop custom
products for clients. The job may be less precarious but they still need to

do right things to keep clients happy and paying.

As you don't have unlimited time and people for your project, you need
to carefully choose what to do next. Prioritizing is the project manager's

main responsibility.

Show-stopping bugs have the highest priority, naturally. Next in line
are tasks with high business value that generate revenue and save time
for your client. When you communicate with clients, there are some
things you keep hearing over and over - those things should take the
top slot in the backlog.

Use the priority checkbox in Active Collab to
High priorit;
signal priority. This will make the task visually i

1 . : Make client h.
stand out every time you open your To-Do list I PO TR OEhON

2#: Fix payment calculation

- things that scream visually tend to be dealt 34#: Public Task Page Frontend

with sooner rather than later.

You can also use labels, like complexity level and business value, to help

you determine how high on the priority list a task should be.

You can even make a special list for high priority tasks that developers
will always check and work on first, before anything else in the Backlog.

That way you ensure critical tasks are always dealt with.

When deciding on what to do next, keep in mind the jar

e metaphor. You can fill a jar with a few big stones, but

' B d 1 : :

IO there's still room. So you put in smaller stones too. Next,
e A 3 put even tinier stones. Same with tasks - choose a few big

tasks and a bunch of smaller to maximize the efficiency.

You also need to pay attention to your team's morale and how your

clients perceive your work.

If your team keeps working day and night on a big exciting feature that’s
never released, they’ll feel discouraged. Imagine making a cake without
tasting the delicious chocolate frosting. Easy wins are important, both
for your team and your clients. Do the tasks that require little time but

bring considerable benefits first, and leave the “whales” for later.

It's important to always keep in touch with your clients, even if you’re
not finished or you have something that needs reviewing. Otherwise,
they’ll feel like they're throwing money down a black hole. They can get
restless, call a board meeting, make a contingency plan, devote
resources to deal with you, hurry the project, and end up with a sub-par

work that reflects bad on both parties.

BOTTLENECKS

Kanban is a great tool for identifying bottlenecks. All it takes is a glance

to see where the holdup is.

You can control bottlenecks by limiting the number of Work in Progress
(WiP). You can make a rule like: There can be no more than 7 tasks in
Development or QA; if there are too many tasks in QA, a developer
should first tackle the QA tasks before picking up a task from the
BACKLOG.

This limit isn’t an arbitrary choice. You’ll need
2 s experience and data to make informed
e decisions. First try working without the
s limitation and see how it goes. You might find
= you can’t manage more than 5 tasks or that 20
is easy. It depends, and there's no perfect

recipe - just a lot of variables.

Your team should agree which person will help with the bottlenecks
when low on work, so each person's knowledge and skills are used to the
full potential. There’s no need for a senior to do a simple edge test when

a junior can do the same, at a fraction of the cost.

Keep in mind that the REVIEW column should always be cleared as soon
as possible. You shouldn't let tasks sit there for too long - they may
seem like they’re done, but often they go back to DEVELOPMENT and
clog your board - just because you didn't review on time and you pulled

more work from BACKLOG than you could handle.

TRACKING TIME

Cycle time is an important concept in Kanban. It's the amount of time it
takes for a task to go from one side of the board (Backlog) to the right
side (Release). If you know your cycle time, you can make better

estimates when delivering of future work.

Some tasks can be done in a few minutes, while some require months.
We mentioned you can label tasks with rough estimates, but you can
also use the “Estimates” field in ActiveCollab to predict completion

time more precisely..

Estimates are useful for letting others know about how much time a task
needs. You can also specify what kind of work it involves and set an
hourly rate for that job type. After that, you can start working on the
task and track how much time you spent working. You can later use this

data for statistical analysis or make invoices and bill clients.

When you create a task, click Set... under Time Tracking, enter time
estimate, and choose the type of work. When someone starts working,
they can use ActiveCollab Timer app (that works like a stopwatch) to
track time, and this data gets synced with ActiveCollab. You can also

add time to tasks manually. When you have time records associated with
tasks, you can create invoices based on your hourly rates, or run a report

which compares estimated vs. actual time spent on tasks.

Start a timer or Add time
Leave Time field blank if you want to start a timer.
Enter value (e.g. 1:30 or 1,5) to add time for the work that you already did.

0:02

Programming

Racing Bike
Check for defects before shipping

REPORTS

There's a special report in ActiveCollab that shows a comparison
between estimated time vs. actual time spent on tasks. This report can

help you perfect your estimation skill.

You can also run a report on all time records and filter them by project,

job type, and assignee.

If you keep tracking time on projects and enforce others to do it too, you
can have invaluable insights about your organization in as little as a few

weeks.

Then you can use this information to optimize your workflow, become
more efficient, and generate more revenue as the result - as long as you
keep the discipline and know how to act on the information. We provide

the tool and you the action.

Reports

Get the information you need by running a report.

Finances

Payments
Overview of all recorded payments

Uninvoiced
Billable time and expenses that haven't been invoiced yet
Assignments

Tasks
Advanced task search and filtering

] Workload
Task distribution across team members

120

BUG TRACKING

Bugs are persistent annoying things. Sometimes they happen,
sometimes they don't. Sometimes they need more work than a normal
task because of their ninja nature. So when a bug gets reported, you

need a special system to deal with them.

The more you wait to fix a bug, the more time it takes because you forgot
how the code works. You can take the “zero defect” approach and decide
to fix every known bug before working on new features, but that’s
difficult in practice because new features can take precedence and are

needed to appease the client.

Our own bug tracking workflow relies on labels and clear
communication - even the most sophisticated, specialized bug tracking
tool will fail without the latter.

ASSIGNED FIXED REOPENED BLOCKER

When a bug gets reported, it starts with a label . Our QA uses a filter
to see all the tasks marked as . They go through them and try to
reproduce the problem. If reproduced, the bug changes the label to

, and developers decide when it will be fixed.

For example, if a bug was reported for Active Collab 5.0.13 today and got
confirmed, the QA would set it for the next release batch “Active Collab
5.0.X Maintenance” (thus making it clear that it needs to be fixed in the

5.0.x bug fix release), and set its label to

Then the developers see a list of confirmed bugs and pick the ones they
will work on by assigning themselves to the task. When they start

working, they set task’s label to

CONFIRMED

WONTFIX PM
DEV

ASSIGNED

DEV

INPROGRESS

FINISH

REOPENED QA

VERIFIED

—bug can’t be reproduced.

NEW

QA

WORKS4MEE

DUPLICATE

BLOCKED

Once they fix the
problem, they mark the
task as FIXED. Our QA
sees a FIXED task and
creates a new test build
to verify that bug has

actually been fixed.

If it’s fixed, the task
label is set to

and the task is
completed. In cases
when a bug is not fully
covered and needs more
work, the QA marks it as
REOPENED and notifies
the developer about the
problem.

The REOPENED task gets
FIXED again, and the
process continues until

it gets

That’s the basic process.
There’s also a couple of
extra labels to cover

some edge cases:

BLOCKED —bug that can’t be fixed because it’s blocked by another task.

BLOCKER —bug that’s blocking other tasks.

This whole process is based on changing labels, but you can also do it

using Kanban, where instead of labels you use columns and move bugs

across task lists.

|
|22

PEOPLE ON THE PROJECT

The most important aspect of any project are people. If no one

understands what you try to achieve with a methodology, expect failure.

But if you know what motivates your developers, clients, or a managers

- implementing Kanban gets much easier.

Clients don’t care how you work but they'll care about how they receive
updates. Developers want to know what the procedure is so they can do
their job. And managers, they need to tie everything together and

actually implement the workflow.
If you're changing how people work, expect resistance. But if they find
the new workflow easy, they'll actually help your cause and promote it.

In the end, your goal is to have a happy team.

Happy team == Good work.

CLIENT

Everything you do is for the client. If they aren't happy, no one is.

They don't really care what methodology you use: all they care about is
getting new functionality without much hassle. They just want to finish
their job in as little clicks as possible, under the budget, with release just

before lunch.

When you take requirements, you need to listen not just what they
want, but also what they need. They may say they need more user roles,
but what they really need is a better team and more trust. Thisisn't a
software issue and you can't solve it with code. Don't try to fix the
client’s work habits, just give them a good software that gets the job

done.

It's also useful to allow clients to see your project, how far you've come,
hear all the technical jargon (so it justifies your work and pay), and hear

what they think about your progress.

In ActiveCollab, you can invite clients to projects and let them see

tasks, comment on them, view notes, start discussions, and upload files.
For sensitive information, you can always check the "hide from client"
checkbox.

DEVELOPER

What developers want to do is to code. Methodologies are just a
necessary evil. No one gets excited about a Kanban board or a daily

standup.

Before implementing any kind of methodology, your team first needs to
know how to work together and adapt themselves to fit the problem. If
they can do that, any methodology will work. Even a perfect process

won't save a team that doesn't know how to collaborate.

Kanban lets your team members motivate themselves as they decide
what to work on. They take ownership of the task and their pride is

measured in the number of completed tasks.

They can’t wait to move their cards. There's a special feeling when you
move a card to finished - that feeling gets you through the day, makes
you love your job, and want to work even more. If that’s not the case,

you have an HR problem and not a methodology problem.

Because Kanban lets you keep shipping new releases quickly, your team

gets to see how their work is being used and feels good about it.

This works as good or even better than any material reward. It's been
scientifically proven that money improves work motivation up to a

certain point - and that point isn't even that high.

MANAGER

A big aspect of Kanban is deciding what to do next. If you keep coming
back to the same discussion over and over again, you're wasting time
and energy. So it's better to make the wrong decision you can revert

later (based on feedback) than to stall and never decide.

We might think every decision is important, but in practice, most of

them aren't worth more than 10 minutes.

So a manager needs to know what are the most important tasks and
make decisions. It might be a thankless role sometimes, but it’s

necessary. The manager needs to:

- communicate with the client

« put all the tasks in the backlog
* prioritise

- work on removing barriers

Good managers don't manage - they work on enabling people to do their

job without distraction.

Developers can't lose time on dealing with negotiations, remembering
to go to meetings, thanking for the meeting, sending daily reports, and

responding to every phone call.

Meetings are a big part of manager's day, but team meetings shouldn’t
be. It's best to discuss work only with the people are who are involved in

a particular issue.

If you do need a meeting, use Kanban to quickly see where you are so you
can address the important points, make an agenda, and keep it

streamlined. Also, always keep an eye on the Work in Progress limit.

126

We started using Kanban and everyone on the team found it a joy to

work with. It’s easy to use and works great for small teams.

Be sure to check out Column view in ActiveCollab. You can create an

account for free and try it out for 14 days.

« projects
Feather Planning People (27) ~ | ProjectInfo ~
LS Discussions Files Notes Time Expenses Activity
Assigned To oueon Labeled With ViewListor Column
Anyone - Any Time - Any - n
Backlog In Progress +Add a Task List
Users import via vCard and CSV Q New API request

NoteGroups model 9 Broken layout on pricing page [=]
@

2 @ 8UG

Wrong logo on plug in tab

Column view design 1?
.

+Add a task

@ Nikola Milasinovic

Try it free for 14 days!

https://www.activecollab.com/try.html?utm_source=ebook&utm_medium=pdf&utm_campaign=Kanban
https://www.facebook.com/activecollab
https://www.linkedin.com/company/a51-doo
https://instagram.com/activecollab/
https://medium.com/@activecollab
https://twitter.com/activecollab

