

3 Introduction

4 Waterfall Project Management

Phases in waterfal l projects

Advantages of waterfal l

Disadvantages of waterfal l

On what types of project you should use waterfal l

10 Transition From Waterfall to Agile

13 Agile Project Management

Agile values

12 agile principles

Elements of agile project management

When and who can use agile

Advantages of agile

Disadvantages of agile

Agile project management in enterprises

Agile methodologies and frameworks

Agile tests

28 Is Agile Really That Different From Waterfall?

31 Case Study: How We Implement Agile Into Our Workflow

How we used to do things

From suggestion to feature

Designing for the user

Kicking things off

Teamwork on display

Putting it to the test

Release day

The result

46 Case Study: Agile Reporting

Answers rather than raw data

Design answer-oriented reports

Implementing automated reporting

Sprint report questions

Real-world example of agile reporting

Contents

3

Introduction

There are two ways you can manage software development projects:

• Waterfall : plan everything in advance, then build according to the plan

for the next whole year

• Agile: plan what you'l l build in the next few weeks, and see how it goes

from there

Agile is an approach to project management that favors responding to

change over careful planning. It's important to emphasize that agile is not a

methodology but a set of principles that define how we approach project

management.

Before there was agile way, al l software projects were managed using

Waterfal l techniques. To real ly understand agile, we first need to understand

the traditional project management approach and how the software

development industry changed.

4

Waterfall Project Management

When you take traditional project management and apply it to software

development, you get Waterfal l . As such, no one invented waterfal l -

instead, we gave it name once we real ised that there are others ways to

manage projects.

In waterfal l , a project is completed in distinct stages and moved step by

step toward ultimate release to consumers. You make a big plan upfront

and then execute in a l inear fashion, hoping there won’t be any changes in

the plan.

Waterfal l was the first software development methodology, inherited from

manufacturing and construction industry where you can't afford to iterate

(after you've built a tower or a bridge you can't go back to "improve" the

foundation). But because software is prone to frequent change, waterfal l is

not the best solution.

Waterfal l is often mentioned algside Agile and stands in contrast to it. The

main difference between them is that waterfal l doesn't react wel l to frequent

changes, which is why it gets a bad reputation in software development

community, where frequent changes are the norm.

5

Phases in waterfall projects
All projects are grouped by type of activity and each projects fol lows the

same phases:

• Requirements - where we analyse business needs and document what

software needs to do

• Design - where we choose the technology, create diagrams, and plan

software architecture

• Coding - where we figure out how to solve problems and write code

• Testing - where we make sure the code does what it supposed to do

without breaking anything

• Operations - where we deploy the code to production environment and

provide support

Once you put al l the activities on a Gantt chart, you get something that

looks l ike slopes of a waterfal l , hence the name.

Usual ly 20–40% of the time is spent on requirements and design, 30–40%

on coding, and the rest on testing and operations.

Activities on waterfal l projects have to happen in the exact order and one

set of activities can't start before the previous one ends. This is why

planning is the most important thing on waterfal l projects: if you don’t plan

right, a phase wil l be late and wil l push every other subsequent phase, thus

putting the whole project over deadl ine.

6

The problem with using waterfal l method on software project is that

planning is very tricky in software development. You can never be 100%

sure how much time you'l l need on something or how much time you'l l

spend debugging. As a result, waterfal l is risky.

Advantages of waterfall

Extensive documentation

Because you can't go back to a previous activity, you're forced to create a

comprehensive documentation from the start, l isting al l the requirements

you can think of.

Knowledge stays inthe organization

When you have extensive documentation, knowledge won't get lost if

someone leaves. Also, you don’t have to spend time on training new

members as they can famil iarise with the project by reading the

documentation.

Team members can beter plam their time

Because everyone knows in advance on what they'l l work, they can be

assigned on multiple projects at the same time.

Easy to understand

aterfal l projects are divided in discrete and easily understandable phases.

As a result, project management is straightforward and the process is easily

understandable even to non-developers.

Client knows what t expect

Clients can know in advance the cost and timel ine of the project so they can

plan their business activities and manage cash flow according to the plan.

Client input not reuired

After requirements phase, cl ient input is minimal (save for occasional

reviews, approvals, and status meetings). This means you don't have

7

coordinate with them and wait for when they're available.

Easier to measure

Because waterfal l projects are simple, it's much easier to measure your

progress by quickly looking at a Gantt chart.

Better design

Produts have a higher cohesion because during the design phase you know

everything that must be taken into account. There is no one-feature-at-a-

time problem that leads to usabil ity problems down the road.

Disadvantages of waterfall

No going back

Once you're finishedOnce you're finished with one activity, it's difficult and

expensive to go back and make changes. This puts a huge pressure on the

planning.

No room for error during requirements phase

Everything rel ies heavily on the requirements phase and if you make an

error, the project is doomed.

Deadline creep

Once one activity is late, al l the other activities are late too, including the

project deadl ine.

QA too late to be useful

Testing is done at the end of the project which means that developers can't

improve how they write code based on QA feedback.

Bug ridden software

Because the testing is done at the end, most teams tend to rush the testing

in order to del iver the project on time and hit their incentives. This short-

8

term wins lead to sub-par qual ity and long-term problems.

Not what the client actually needs

Most of the time, cl ients can't articulate what they need until they see what

they don't need. If the cl ient real izes they need more than they initia l ly

thought, the project plan wil l need a major overhaul (as wel l as the budget).

Unexpected problems

Designers can't foresee al l the problems that wil l arise from their design,

and once those problems surface, it's very difficult to fix them.

On what types of project you should use

waterfall

Waterfal l is suited for projects where:

• Budget, requirements, and scope are fixed (eg. you're building a one-off

project which doesn't need further development)

• You can accurately estimate the work (you're famil iar with technology

and you've done the same work before)

• You can't afford to iterate (eg. you're building a heart rate monitoring

software)

• Project is innately low-risk (you're building a clone of something that

already works)

• Project has a hard ship date (eg. you have to ship a video game by

Christmas)

• Your users can't or won't update software (doesn't apply to web

appl ications where updates are seamless)

You shouldn’t use waterfal l :

• Where a working prototype is more important than qual ity (eg. you first

need to test if there’s a market demand)

9

• When you don't know what the final product should look l ike

• Where cl ient doesn't know exactly what they need

• When the product is made for an industry with rapidly changing

standards

• When you know you won't get the product first the right time and have to

incorporate user feedback

• When your users are happy with v1.0 and you can ship additional

features as time goes on

Whether you'l l use agile or waterfal l doesn't matter on your preference but

type of project and your customer/cl ient. While strictly speaking agile is

better for software development (as according to the Standish Group 2015

Chaos Report), if you can't iterate, you have to use waterfal l .

https://blog.standishgroup.com/post/50

10

Transition From Waterfall to Agile

To understand how and why agile came into being, we first need to

understand what was it l ike to develop software in the past and what

changed in the meantime.

First, we used to manage software development projects using traditional

project management techniques because we inherited them from other

industries (l ike construction). The traditional approach consists of dividing a

project into phases, planning everything out on a timel ine using WBS and

Gantt charts, and then fol lowing the plan.

But there's a problem - the traditional approach works nicely when you don't

expect any changes in the middle of the project. But in software

development, things are always changing. If you plan what you'l l develop

for the next 5 years, as soon as there's some new technology (eg. new

protocol , new service, new hardware) your 5-year plan wil l become

obsolete.

Second, the software economics worked differently in the past. In the

1980s, the cost of owning and maintaining software was twice as expensive

as developing it. Today, it's reverse: everyone can run software on their

personal computer and developers can deploy their own apps on AWS or

Heroku within minutes.

Third, internet changed how we develop and consume software. With the

rise of internet, the number of people who use software on a daily basis

exploded. As the market demand for software expanded (driven by

consumers and smal l businesses), any developer could quit their corporate

job and start their own company. Software development was no longer a

market reserved only for big players.

This democratization of software had a profound effect on how we develop

software. But that's only half of the story.

We also have to take into the consideration that 3/4 of al l software products

used to fail because they didn't meet requirements or weren't used. That's a

11

lot of money down the drain.

So, one hand we have a rise of smal l software development companies, and

on the other, we have market uncertainty and a lot of risk.

Smal l software development companies needed a simpler, faster, and less

riskier way to develop software. They couldn't afford to spend several

months planning only to end up having to rewrite the whole thing because

there was some fundamental error in their logic. Plus, they needed to move

fast so they could capture the market and start making money as soon as

possible.

Several l ightweight methodologies were developed that would let

companies have prototypes faster:

• 1991 Rapid Application Development

• 1994 Unified Process and Dynamic Systems Development Method

(DSDM)

• 1995 Scrum

• 1996 Crystal Clear and Extreme Programming (XP)

• 1997 Feature-Driven Development

Today, we refer to al l those methodologies as agile methodologies (because

they fol low agile principles, as defined in the Agile Manifesto). But at the

time, they al l were just a bunch of disparate methodologies, l iving in their

own universe.

The initia l adopters of these early agile methods were smal l-to-medium-

sized teams who worked on unprecedented systems where it was difficult

to scope requirements. To design and achieve product/market fit of those

systems, you needed exploration and constantly change thing until you get

the system right.

Thanks to methodologies that favored rapid-prototyping, smal l product

companies could create and release the main software faster and add new

features as time goes on.

12

Rapid-prototyping gave smal ler companies an advantage because they

could react to market needs faster than an enterprise. While enterprises

rel ied heavily on documentation and long lead time, startups could build a

prototype, test it, and ship in the fraction of the usual time.

Heavy, document-driven processes (l ike TickIT, CMM, and ISO 9000)

supported the huge organizational structure of enterprises, but it hindered

their innovation and market responsiveness.

Product companies benefited the most from these early agile

methodologies, but development shops discovered that, in some cases,

they too could benefit from a more l ightweight approach (although that

depended on the nature of their cl ients).

Al l the disparate l ightweight project management trends came together in

2001 when 17 software developers met in Utah to discuss their processes.

Together, they defined the concept of agile software development in Agile

Manifesto.

13

Agile Project Management

Today, when we say that some methodology is agile, it means it fol low the

value and principles from Agile Manifesto.

Agile Manifesto recognizes that there's no one-size-fits-al l , so it doesn't

prescribe how to run projects. Instead, it lays out guidel ines on how to best

manage software projects.

Agile values

Most important part of Agile Manifesto are the 4 values. They are the heart

of what it means to be agile.

Agile values help you focus on what's important. For example, one of the

values is "working software over comprehensive documentation". I t doesn't

mean that documentation is bad - it means that if you have to choose

whether to spend your time on writing a detailed user story or fixing a bug,

you should choose the latter.

Individuals and interactions over processes and tools

Knowledge workers prefer autonomy. So in software development it's more

important to let people solve problems by col laborating than forcing them to

fol low a procedure for the sake of satisfying some dusty pol icy.

Every company needs processes (especial ly after they've grown to a certain

size), but you must know why a rule is in place and when you should break

it. For example, when daily standups stop being useful , don't force them just

because some agile methodology says you must have them.

The way you know when process doesn't work is when people can't

col laborate efficiently anymore. People are the engine behind every project.

If they can't interact because of hierarchy or a lengthy/complex protocol ,

they have to spend more time on managing tools and processes than doing

their job.

14

"Good process serves you so you can serve customers. But ifyou’re

not watchful, the process can become the thing. The process

becomes the proxy for the result you want. You stop looking at

outcomes and just make sure you’re doing the process right. It’s not

that rare to hear a junior leader defend a bad outcome with

something like, “Well, we followed the process.” A more experienced

leader will use it as an opportunity to investigate and improve the

process. The process is not the thing. It’s always worth asking, do we

own the process or does the process own us?" - JeffBezos

"There’s something really wrong with our definition ofwhat a

‘completed project’ is. If it means ‘Did Chris get all his project tasks

done?’ then it was a success. But ifwe wanted the project in

production that fulfilled the business goals, without setting the entire

business on fire, we should call it a total failure." - The Phoenix

Project: A Novel About IT, DevOps, And Helping Your Business Win

Working software over comprehensive documentation

In traditional project management, phases happen in sequence and if you

mess up the first phase (requirement gathering and documentation), every

other phase wil l suffer. That's why waterfal l needs comprehensive

documentation. But on agile project we expect things to change.

Do you real ly want to spend your whole time updating the documentation?

What matters the most is having a working product that real users can test.

If you had to choose between fixing a bug and writing a report on it, fixing it

is the best use of your time.

This doesn't mean that you should forsake documentation. Developers fal l

in this trap often and write terse one-l ine user stories, which creates trouble

for QA and maintainers because they can't figure out the proper user

acceptance criteria.

The perfect documentation should be "Just Barely Good Enough". Too much

and it goes to waste or can't be trusted because it's out of sync with code;

Too l ittle and it's difficult to maintain and get new team members up to

speed.

15

When writing documentation, you should ask yourself what would you want

to know if you joined the team tomorrow and document based on that. If

you have trouble with documentation, grab a copy of Living Documentation

by Cyril le Martraire.

Customer collaboration over contract negotiation

Contracts create the culture where change isn't an option. Agile creates the

culture where change is expected. But how do you manage change? By

col laborating with customers.

Agile presupposes that you have unl imited access to your customers and

that you can always sit down with them and talk. Developers are natural

problem solvers but they need access to the customer so they can better

understand what the real problem is.

Contracts are useful , but they have a nasty side effect: people tend to care

more about del ivering the project within time and budget than fulfi l l ing the

real business goal . Further, when the team fal ls behind schedule, they are

pressured to get things done which results in frustration, panic, and lower

qual ity.

Also, when you sign a contract early in the l ifecycle, you're guesstimating

and more often than not, you're wrong. But you stil l try to hit the milestone

even though they have nothing to do with real needs.

That's why agile favors customer col laboration and del ivering work in smal l

increments. This lets scope work as you gather more information and

discover what you don't know.

Responding to change over following a plan

The more time you spend on planning, the more you resist changes lest

your efforts go to waste. But the goal is not to del iver project according to

the plan (within time and budget) - the real goal is to satisfy some business

goal , and if it means completely changing your plan, then so must be it.

I t's more important to build what you real ly need than to bl indly fol low an

obsolete plan. Developers may hate it when they their code becomes

16

inval idated, but cl ients hate it even more when they don't get the product

they need.

That's why agile favors shorter lead time and encourages teams to chop

things up in smal ler del iverables so they won't have to redo large chunks of

work. This means that you are never done with requirements gathering and

design phases but you continual ly revisit them throughout the l ifecycle.

17

12 Agile Principles

1 . The main goal is satisfying the customer. Al l your metrics should be tied

to the goal .

2. We don't what the customer real ly needs. It's best to give them a working

product as soon as possible, l isten to feedback, and change based on

the feedback. We should welcome change even late in development

because useful software is more important than deadl ines.

3. Release updates as soon as they're finished, preferably every two

weeks.

4. To build what the customer needs, business people and developers must

work together every day.

5. Motivated individuals are the heart of every project. Give them the

support they need and don't micromanage them.

6. Nothing can replace face-to-face conversation.

7. Working software is the primary measure of progress

8. Death marches and crunches are counterproductive. If you can't develop

sustainably and maintain a constant pace indefinitely, rethink your

processes.

9. Don't let the technical debt build up. You'l l be busy extinguishing fires

and won't be able to respond to changes on time when you real ly need

to.

10. Say no to feature requests customer doesn't real ly need.

11 . Self-organizing teams are the most efficient organizational structure.

12. The team should reflect on their past work at regular intervals and

improve.

18

Elements of agile project management

Culture where change is expected

Agile isn't about using Kanban boards, having daily standups, or anything

similar (those are elements of specific agile methodologies). Agile, at its

core, is mindset where everyone, from employees to cl ients, expects

change. You can't promise your cl ient everything at once or a firm deadl ine

because both you and the cl ient know that's unreal istic. But you can

promise them that you'l l give them something they can use and l isten.

Incremental development

Each iteration builds on previous work, making the product better gradual ly.

Also, you don't wait for completed work to pile up before releasing it al l at

once - you release it as soon as it's finished. An iteration might not add

enough features to warrant a marketing campaign, but that doesn't matter

because the ultimate goal is to give customers value.

Frequent releases

Because software is developed incremental ly, you can have shorter cycles,

where at the end of cycle you ship new features/updates. This way,

customers can get value as soon as possible and val idate it. If the work

doesn't satisfy their needs, you can learn that before you spend more time

on development.

Short feedback loop

Because releases are more frequent, you can get feedback faster. And

because you can get feedback faster, you can more quickly change the

product and give value.

High level of client involvement

In order to reap the ful l benefits of short feedback loop and frequent

releases, you need a high level of cl ient involvement. You need to talk to

your cl ient after each cycle and see how they use the software and if it they

derive value from it.

19

Sometimes the cl ient is not available to give you feedback. Some agile

methodologies (l ike Scrum) solve this problem by having a special role on

the team cal led Product Owner. This person serves as a customer

representative and act on behalf of the customer. If a developer has any

question, they ask the product owner instead of the customer. Product

owner also reviews progress and re-evaluates priorities at the end of each

iteration.

When and who can use agile

Today, agile is such a buzzword that teams outside software development

try to incorporate it into their workflow. But agile is not for everyone.

For example, a marketing agency can never implement agile because

cl ients don't want to pay for a half-finished marketing campaign and iterate.

There are revisions, but their number is clearly specified in the contract.

Plus, there are no such thing as a "working increments" - you either have

the del iverables or you don't.

Agile isn't the right approach for every software project either. If you don't

have access to customers, can't iterate, or if you have a complex

organizational structure, it's very difficult to adhere to agile principles.

Agile works best when:

• You can't estimate the time you'l l need and don't know the ful l scope of

20

requirements

• You don't know whether there's a need on the market for your software

• You can't map the business needs and the design needs to emerge

through trial and error

• You have unl imited access to your customer who's ready for extensive

involvement

• You can afford to iterate and don't need to del iver a ful ly functional

software at once

• Neither you nor your cl ient have a complex bureaucracy that delays

decision

• Cl ients don't have a fixed budget/schedule

• You need to capture the market before there's any competition

• Your customers don't have trouble updating their software (or don't even

notice it, eg. they use a web app)

As you can see, agile is more suited for smal l-to-medium size organizations

than corporations. The reason is simple: the less people there are, the

easier it is to make a decision and respond to change. Also, agile is more

suited for product companies over consultancies.

Agile is also great for startups, where "fail fast" is the dominant mantra.

Venture capital ists encourage startups to try crazy ideas and let the markets

do the work. Most of the ideas wil l fai l those few that succeed wil l change

the world.

Advantages of agile

• You can deploy software quicker so your customer can get value sooner

rather than later

• You waste less resources because you always work on up-to-date tasks

• You can better adapt to change and respond faster

• Faster turnaround times

21

• You can detect and fix issues and defects faster

• You spend less time on bureaucracy and meaningless work

• There's a big community of agile practitioners with whom you can share

knowledge

• You can get immediate feedback (which also improves team morale)

• Developers can improve their coding skil ls based on QA feedback

• You don't have to worry about premature optimization

• You can experiment and test ideas because it costs are low

Disadvantages of agile

Agile has strong advantages but it's important to know the l imitations and

risks it brings.

• Documentation tends to get sidetracked, which makes it harder for new

members to get up to speed

• It's more difficult to measure progress than in waterfal l because progress

happens across several cycles

• Agile demands more time and energy from everyone because

developers and customers must constantly interact with each other

• When developers run out of work, they can't work on a different project

because they'l l be needed soon

• Projects can become ever-lasting because there's no clear end

• Scope creep and experience rot

• Cl ients who work on a specified budget or schedule can't know how

much the project wil l actual ly cost, which makes for a very complicated

sales cycle (unti l iteration ends is not something cl ients l ike to hear)

• Product lacks overal l design, both from UX and architecture point of

view, which leads to problems the more you work on the product.

• Teams can get sidetracked into del ivering new functional ity at the

22

expense of technical debt, which increases the amount of unplanned

work

• Features that are too big to fit into one or even several cycles are

avoided because they don't fit in nicely into the philosophy

• You need a long term vision for the product and actively work on

communicating it

• Products lack cohesion and the user journey is fragmented because the

design is fragmented. The more time passes, the more disjointed

software ends up.

• Short cycles don't leave enough time for the design thinking process so

designers have to redevelop the experience over and over due to

negative feedback.

• Check here for some more Scrum sprint planning anti-patterns and

product backlog and refinement anti-patterns

Workers in tech don’t usually feel like they have the ability to focus on

craft — especially when it comes to visual design. When you're

constantly iterating, constantly pushing new versions out, you can’t

invest time in seemingly unnecessary details that will be lost in

tomorrow’s update. - Jessica Hische

Agile project management in enterprises

Big companies general ly have a problem of being too slow, with too much

WIP, and too many features in the backlog.

Traditional ly, big companies would need 6 months for gathering

requirements, another 6 for development and testing, plus worry if they

have an opening in their development schedule and capital for the

feasibil ity study to get things going.

There's also another problem. Big companies need new features to stay

competitive but features are always a gamble. About only 10% of new

features get desired benefits. The faster you can put out features on the

23

market and test them, the faster you can differentiate the heroes from the

zeroes and recoup the invested capital .

"Products need to ship in six months. Otherwise, some Chinese

company will steal our idea, have them on our competitor's store

shelves, and take the majority of the market.

In these competitive times, the name ofthe game is quick time to

market and to fail fast. We just can’t have multi year product

development timelines, waiting until the end to figure out whether we

have a winner or loser on our hands. We need short and quick cycle

times to continually integrate feedback from the marketplace.

But that’s just half the picture. The longer the product development

cycle, the longer the company capital is locked up and not giving us a

return. The CFO expects that on average, R&D investments return

more than 10%. That’s the internal hurdle rate. Ifwe don’t beat the

hurdle rate, the company capital would have been better spent being

invested in the stock market or gambled on racehorses.

When R&D capital is locked up as WIP for more than a year, not

returning cash back to the business, it becomes almost impossible to

pay back the business." - The Phoenix Project: A Novel About IT,

DevOps, And Helping Your Business Win

When big corporations decide to be more agile, they need methods that

work at a large scale. They also need a lot of cross-functional coordination

so Development, Operations, and Sales & Marketing can work together

efficiently.

The best approach that enables corporations to be more agile is the

DevOps movement, which usual ly consists of:

• Work visual isation with Kanban boards

• Faster time to market for new features

• Lower failure rate of new releases

• Shortened lead time between fixes

24

• Faster emergency changes and recovery

• Smal l and frequent releases

• Control l ing WIP

• Faster feedback loops

• Ensuring qual ity from the start

• Continuous del ivery and automated deployment

• Al igning cycle time of operations with cycle time needed to keep up with

customer demand (cal led takt time)

• Standardized environments across development, QA, and production

• Short sprint intervals and reduced planning horizon

• Scrum-l ike team roles

Big companies often combine Agile and Waterfal l , where they use practices

from agile methodologies (l ike sprints and roles) and the efficancies of

waterfal l , thus creating an Agile-Waterfal l Hybrid.

Agile is not a silver bul let to late projects. Big companies who choose to go

agile face a whole new set of problems and risks. Here are some side

effects that happened at Microsoft once they switched to agile mindset:

"The problem happens when the entire company is completely and

totally focused on developing an absurd number ofnew features and

products, giving them completely unrealistic deadlines, and then

shipping software on those deadlines no matter how buggy it is.

The idea is that everything is serviceable over the internet now, so

they can just "fix it later", except they never do. This perpetuates a

duct-tape culture that refuses to actually fix problems and instead

rewards teams that find ways to work around them.

The talented programmers are stuck working on code that, at best,

has to deal with multiple badly designed frameworks from other

teams, or at worst work on code that is simply scrapped. New

features are prioritized over all but the most system-critical bugs, and

25

teams are never given any time to actually focus on improving their

code." - Microsoft employee

Agile methodologies and frameworks

Agile is a philosophy and not a methodology. There are some

methodologies (l ike Scrum) that happen work well with it, but if you don't

embrace the philosophy, the methodology won't do anything.

Agile doesn't say how you should manage project; instead, it only provides

guidel ines and is open to interpretation.

Methodologies by their nature prescribe how you should do things. I t may

seem Agile rejects al l methodologies, but that's not true:

• Agile embraces documentation but rejects hundreds of pages of never-

maintained and rarely-used tomes.

• Agile embraces planning but recognize the l imits of planning in a

turbulent environment.

• Agile embraces processes but only as long as they serve a real purpose

and not for the sake of fil ing some diagram in a dusty corporate

repository.

There are a lot of methodologies and frameworks that are inspired by agile

principles, but the l ine that separates agile and waterfal l is often blurry.

Methodologies aren't 100% agile or 100% waterfal l . Instead, they occupy

different places on adaptive-predictive continuum:

• Agile methodologies l ie on the adaptive side (they favor responding to

change)

• Waterfal l methodologies l ie on the predictive side (they favor planning)

Every methodology needs planning and responding to change. But what

separates them is what they favor more.

26

Also, you can divide methodologies based on what they focus on:

• Some provide best practices (l ike Extreme Programming and Pragmatic

Programming)

• Some control flow of work (l ike Scrum and Kanban),

• Some support activities for requirements specification and development

(l ike Feature-Driven Development)

• Some cover the ful l development l ife cycle (l ike DSDM and RUP).

Agile Al l iance has a very handy map that l ists the most common practices

from different agile methodologies.

The most popular methodologies that are consistent with agile principles

are Scrum, Kanban, XP, Lean, and DSDM. Scrum in particular is so popular

that it became synonymous with Agile.

https://www.agilealliance.org/agile101/subway-map-to-agile-practices/

27

Agile tests

There are several of informal tests you can take to asses whether your

organization is agile (or complies to Scrum's best practices):

• Karlskrona test http://mayberg.se/learning/karlskrona-test

• 42 Point Test http://www.al laboutagile.com/how-agile-are-you-take-this-42-point-test/

• Kniberg's Scrum checkl ist https://www.crisp.se/wp-content/uploads/2012/05/Scrum-checkl ist.pdf

• The Nokia Test http://agileconsortium.blogspot.rs/2007/12/nokia-test.html

• The Joel Test https://www. joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/

http://mayberg.se/learning/karlskrona-test
http://www.allaboutagile.com/how-agile-are-you-take-this-42-point-test/

https://www.crisp.se/wp-content/uploads/2012/05/Scrum-checklist.pdf
http://agileconsortium.blogspot.rs/2007/12/nokia-test.html

https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/

28

Is Agile Really That Different From

Waterfall?

Waterfal l is always mentioned as the antithesis to Agile, which makes sense.

After al l , waterfal l projects have a hard time deal ing with changes while

agile projects welcome change. At least in theory.

The truth is, no matter what methodology you use, change is not a good

thing. Change always means additional scope, delay, and expenses. Agile is

better at minimising the effects of change, but they stil l happen. Also, agile

teams have the culture where change is OK, which is maybe the most

important benefit of being agile.

But once you scratch behind the surface and look both from purely process

perspective, waterfal l is very similar to agile.

Once you break down any agile workflow, you'l l sti l l get a set of activities

that fol low one another, which eerily resembles Waterfal l . And if you treat

waterfal l projects as smal ler phases within a big project, you'l l end up with

agile.

In other words, activities on a project are waterfal l and if you treat the whole

project as a series of iterations, it’s agile.

29

Whether you're agile or waterfal l u ltimately depends on whether your cl ient

expects the first version to be bad. And waterfal l projects are projects

where the cl ient decided on zero iterations.

"In agile projects, the number of iterations is decided on by the

customer. Because things are all done within an iteration in agile, the

logical assumption was that an iteration equaled a project. But an

iteration is more properly referred to as a phase or subphase of the

project." - PMI

As you can see, agile sti l l fits in the traditional project management, only the

point of view changes. Instead of treating each iteration as a separate

project, iterations are just phases in one big project.

The real difference between the waterfal l method and agile is that in

waterfal l the cl ients is heavily engaged at the beginning of the project and

then their engagement decl ines; while in agile, the cl ient is constantly

engaged.

So what this al l means in practice? It means no organization is purely agile

30

or waterfal l . Agile and waterfal l are more about the culture and type of work

the organization does than how they do it. You’l l find that most

organizations divide the project into waterfal l milestone but work according

to agile principles between those milestones.

"A problem common with comparing agile and waterfall is the

labeling. Few, ifany, companies are purely "agile" or "waterfall". They

are more mindsets that encompass a wide variety ofpractices and

approaches to development. Labels are convenient for helping make

an argument, often with cute little straw-man statements to help

reinforce preconceived notions." - Clinton Keith

31

Case Study: How We Implement Agile

Into Our Workflow

When businesses rely on your app for their day-to-day work, you have to be

agile enough to quickly address their needs. If you don’t, others definitely

wil l . In the unforgiving world of SaaS, delaying a critical feature (or rushing a

bug-ridden piece of code) wil l mean losing cl ients.

Therefore, the development process needs to run smoothly and up to a

standard, with delays reduced to a bare minimum. Before any change

makes its way to the end user, it goes through five crucial phases: feedback,

design, development, qual ity assurance and deployment. Here's what we’ve

learned (the hard way) about each of the stages from over ten years of

software development.

How we used to do things

Before we get into the details, let’s look at how this al l came about. After

years of adding features without enough scrutiny, our app was suffering

from feature bloat. We’ve added so much functional ity over the years that

new users were intimidated by the sheer complexity of the UI (never to

return again). We knew we had to rebuild from the ground up, even if that

meant rewriting every single feature from scratch.

Then came the delays. The features for new versions were constantly

lagging behind schedule. For example, a junior developer was supposed to

develop an integration with QuickBooks. We didn’t accurately predict the

complexity, skil ls or knowledge needed. Plus, he was the only one assigned

to that task, and no one could quickly jump in to help him out. As a result,

what was supposed to be a two-week job ended up taking five. Those were

a few red flags.

I t was clearly time to switch to a more agile approach. We took what we

liked from various agile (and not so agile) methods, combined it with

experience, and came up with our own version, which has been del ivering

32

great results ever since.

This is the road a feature must travel before it’s offered to the end user; to

ensure qual ity, a new feature is introduced only after it has gone though al l

of these stages:

From suggestion to feature

In our workflow, a new feature starts taking shape long before it reaches the

development team, and it’s usual ly born of user feedback. This is no

coincidence — we used to release features no one needed, usual ly just

because one user was particularly loud or we simply thought something

would be great to have. Instead of imagining what features our users might

need, we now make decisions based on actual demand.

If you’re into lean manufacturing, you’d say that our customers “pul l” certain

features by requesting them more often than others. Our support and sales

teams are a big part of the process because they’re constantly in touch with

users who share their needs and ideas.

Based on the feedback, our teams update a form. Feedback col lected and

saved using this form is essential for deciding which features make their

way onto the road map.

When we don’t have al l of the information we need, we’l l reach out to

customers directly. This is usual ly done with targeted surveys on a careful ly

selected sample. The point is that we listen. No feedback is lost on us. It’s

always acknowledged and documented.

33

The next step is analysis. We tal ly the scores each month to see which

feature got the most votes. Also, with proper categorization, we get a

broader perspective on which parts of our software need work. For

example, if the calendar is getting many complaints, we’l l consider

revamping the entire section, rather than introducing the feature that got

the most votes (such as calendar exporting).

However, even when the results are in, the decision to introduce a feature

isn’t final . Before it makes it onto our to-do l ist, we always do a thorough

sanity check:

34

• What benefits wil l this feature bring to users?

• Does it fit our product philosophy?

• Wil l it add unnecessary complexity?

• Does it blend in nicely with the existing interface and functional ity?

• Do we have the resources to del iver it in a reasonable timeframe?

• When a feature passes the checkl ist and the product owners approve it,

it’s time to go to the drawing board.

Designing for the user

Experience has taught us that adding a new feature doesn’t just mean

sticking it on top of the UI — you have to blend it with the existing design,

with the user in mind. If you don’t do this, you’l l soon end up with an app so

complex that only a brave few wil l make it through the first five minutes of

the trial (yes, we’ve been there). Aesthetics are also important for a good

first impression, but our main concern is ease of use. A feature needs to be

added in a way that feels natural to the user.

We keep things in perspective by asking: where would the user expect this

option to be?

For existing users, it’s important that the new design fol lows the patterns

they’re famil iar with and doesn’t disrupt their workflow. Also, there are

industry standards and conventions that we’re al l (unconsciously) used to.

Never expect your users to change their habits completely. They’l l more

l ikely look elsewhere if the interface is not intuitive.

Take keyboard shortcuts for example. You could make your own set of

shortcuts and expect users to learn them (they probably won’t). Or you

could add ones that people already use. A lot of our users already use

Slack, for example, so we added a shortcut they are already famil iar with

(Command + K for quick jumps works in Active Col lab as wel l).

35

When the user flows are in place, our UX designer mocks up the design in

Sketch. We rarely use HTML in the early stages. Well-thought-out Sketch

visual izations give us enough flexibil ity that we don’t have to do any

backtracking when we start coding. The initia l design usual ly ends up

matching about 80% of the final product. The rest is added and adjusted

along the way.

Another important step of the design process is copy. Our copywriters

devote a great deal of attention to every single word. We even have our

own style guide, to sound as approachable and to be as easy to understand

as possible. For example, saying “security certificate” instead of “SSL

certificate” conveys in layman’s terms something an average user might not

be famil iar with.

When al l this is done, the feature is assigned to a development team. The

team is made up of a project manager, a lead developer and a number of

back- and front-end developers, depending on the workload. The project

manager makes sure everything runs smoothly and on schedule, while the

lead developer takes care of the technical side of things. They also

coordinate and mentor junior developers.

36

Kicking things off

Our kickoff meetings aren’t boring motivational get-togethers. They are

opportunities for a development team (consisting of junior and senior

developers) to meet with the project manager and product owner.

Instead of al lowing empty monologues, we focus on putting everyone’s

words into actionable tasks. Throughout the day, three important meetings

take place:

• The product owner presents the given feature to the team, the ideas

behind it, the initia l designs and the expected results.

• Then, the team has its own meeting in which it discusses the action plan,

potential problems and the testing schedule.

• The final meeting is attended by everyone involved, and the plan takes

its final shape. At the end of this meeting, the team gives estimates for

demos and a final due date.

Three meetings might sound l ike a lot for one day, but that’s how we make

sure problems are solved early on. Fil l ing in the blanks at this stage saves

37

our developers a lot of time, false starts and backtracking. The meetings

also encourage teamwork and make everyone feel that their contributions

are welcomed.

After the meetings, the team wil l have al l of the necessary information:

What?

This is the scope of the feature and includes everything that needs to get

done, as wel l as potential blockers and bottlenecks. We try to anticipate as

many scenarios and edge cases as possible. Predicting al l of them is not

easy; they often come up as we go.

Why?

The product owner estimates the business value of a feature and explains

why it’s worth the effort. This way, the team gets a clear picture of the

benefits to customers and the product. The prime motivator here is that

everyone should understand why their work matters and how it contributes

to the company as a whole.

How?

By outl ining the steps required to complete a feature, we make sure our

developers never lose their compass. We also set real istic expectations by

adding a complexity tag. We went with t-shirt sizes — S can be solved within

a few hours, while XXL takes weeks or more to complete.

Who?

The team lead is responsible for finishing a feature or task on time and for

updating the product owner on the progress. Other team members are

assigned to their own set of subtasks, so that it’s perfectly clear who is

accountable for what. Keeping this as transparent as possible helps us to

see whether someone is struggl ing or causing delays.

When?

With everything taken into account, a due date is estimated. If a task is

delayed, we analyze the reasons and use that experience the next time.

38

That way, a missed deadl ine becomes a learning opportunity and not a

source of stress.

Kickoff day can get hectic, but it’s also very fruitful . Everyone pitches in with

ideas and comments. A task transforms from an empty slate to a hub for

comments, edits and updates. By the end of the day, the development team

has a clear picture of the work ahead and sol id ground to build upon.

Al l important information is available in the task. This is also where team

members communicate and post updates on their progress.

We go through this checkl ist before beginning work:

✓ Feature explained

✓ Steps for completion outl ined

✓ Business value assigned by product owner

✓ Complexity assigned by team

✓ Feature and bug dependencies identified

✓ Performance criteria identified (if needed)

39

✓ Demos scheduled

✓ Start and end dates set by team leader

This is the moment when a task moves to the “In progress” column. When a

feature is kicked off, the task moves into the “In Progress” column.

Teamwork on display

Our developers never work alone — it’s always a team effort, and it’s by far

the most efficient way to release new features. Before teams were

introduced, a (junior) developer would get stuck with a problem and might

have gone round in circles for days (without anyone real izing it). Or, if they

weren’t the lone-ranger type, they’d constantly be distracting col leagues

and managers.

On the other hand, with teams, we mix people with different skil l sets and

levels of experience. This means that everyone is assigned a set of tasks

appropriate to their level . Plus, seniors get the benefit of learning how to

manage and coach junior teammates — and juniors get to ask for help.

Because it’s a team effort and everyone is working towards the same goal ,

questions aren’t regarded as distractions, and the team can tackle any issue

much more efficiently. The team becomes a self-organizing entity, spl itting

40

work into phases (or sprints) and presenting their work during demos.

Show And Tell

According to the schedule, the team wil l demo for the product owner. The

purpose of the demos is to show how well a feature is performing in its

current state and where it needs more pol ish. I t’s a real ity check that

doesn’t al low for excuses l ike, “It just needs a few finishing touches”

(touches that would take another month). Also, if things start to take a wrong

turn, product owners get to react quickly.

Weekly Meetings

We started off with regular short daily meetings attended by al l developers.

Each developer would briefly describe what they were working on, their

problems, their blockers and whether they needed help. I t soon became

obvious that these meetings needed to be more focused and to provide

tangible results. So, we switched to having meetings with individual teams

about once a week. This is how the product owners and project manager

are kept in the loop and al l potential problems are dealt with on the spot.

Putting it to the test

The code is written, the demos have been successful , everything seems to

be wrapping up nicely… until you release the feature and see that the app

crashes. That’s why every feature we make goes through qual ity assurance

(Q/A). Always. Our tester meticulously goes through every possible

scenario, checking al l options and running tests in different environments. A

feature rarely passes Q/A on the first go.

To increase productivity, we used to let developers start on new features

during this phase, but that just resulted in a lot of delayed, half-finished

features. So, now the development team keeps busy by working on smal l

maintenance tasks while their feature is being reviewed. If Q/A finds a

problem, the developers immediately fix it and resubmit. The process is

repeated until the feature passes Q/A and moves on to code review.

This is when a senior developer makes sure the code is written according to

41

our standards. One final step before the release is writing the

documentation — you don’t want to get swamped by support emails after

releasing a feature that no one knows how to use. Our copywriters also

update the release notes and write marketing materials, such as email

announcements and blog posts.

Here’s our definition of “done”:

✓ Auto-tests written

✓ Q/A done and al l resulting tasks completed

✓ Code review done and code merged to master

✓ Release notes updated

✓ Feature and bug dependencies identified

The task has reached the final stage, cal led “Release Q.”

Release day

When choosing a day for new releases, we immediately decided against

Friday and Monday. Friday is not good because any potential issues

wouldn’t get resolved until Monday; plus, the support team was already

pretty busy then. Monday is not the best time because any major update

requires preparation, which would have to be done on the weekend. It’s

always good to leave a day for final touch-ups. This narrows down the

options to three days — and we went with Tuesday. Here’s why:

• We have Monday to review the release and add finishing touches before

deploying.

• If there are any untranslated phrases (our web app is available in seven

languages), we have enough time to finish the translation.

• The marketing team has plenty of time to send out newsletters and

announcements via social media.

• We are available to provide upgrade support quickly and efficiently for

42

the rest of the week.

• If a deadl ine has passed for whatever reason, we stil l have Wednesday

or Thursday to complete the work.

Free Activity Day

The day after a major release is a free day for the team. This is when they

learn new skil ls or do anything work-related that they find interesting. Even

though everyone’s eager to know which feature we’l l be kicking off the

fol lowing day, the team doesn’t discuss that just yet. Instead, they’l l relax

and maybe watch a presentation about the history of Erlang, or finish

reading that article about why PSR-7 and middleware are important to

modern PHP development, or have their own retrospective discussion. It’s a

wel l-deserved day to recharge their battery and celebrate a job well done.

Bug Hunt Day

Apart from developing major new features, there is always work to be done

on existing ones. Whether it’s a bug fix, a design update or a smal l change

in functional ity, the team needs to take care of it in a reasonable time.

Clearing the backlog of bugs is much faster when a day is dedicated just to

that.

This is why we have bug-hunting days at least once a month. It’s when al l

developers stop working on their main projects and turn their attention to

maintenance. This focused effort has proven to be a great success. When

everyone works solely on bugs on the same day and is available to help

each other, the team solves a huge number of issues.

The result

Releasing a big feature now takes about three weeks on average, from the

kickoff to development, testing, code review, documentation and final

release. A feature of equivalent complexity used to take us 45 days. From

our perspective, that’s a 100% increase in productivity. We accomplished it

with the same resources and people, the only difference being an improved

workflow.

43

To us, Agile is not a destination. We see it as thinking, learning, and constant

improvement that yields measurable results (measured in how well we are

meeting customer demands). That’s what it’s al l about.

Dave Thomas says that agil ity is what matters, and that it’s a real ly simple

framework (no book or coach needed):

1 . Find out where you are,

2. Take a smal l step towards your goal ,

3. Adjust your understanding based on what you learned,

4. Repeat.

Some may not l ike what he is saying, and may prefer prescribed

management and development processes more than the one that’s in

constant motion, but saying that such a process (and thinking that got the

team to devise it) is not agile would be wrong. The process itself may be

‘waterfal ly’, but that is how flow works (it flows through work-cel ls) and it’s

great when you are building a known solution to a known problem (Active

Col lab turns 10 this year, so we know our customers, what they are looking

44

for, and how to built it).

I f you start from the perspective that al l Waterfal l projects are Deathmarches

and that Waterfal l is bad would seriously l imit the team’s abil ity to think how

to improve and better do what they are hired to do. They should be thinking

about the customer, value stream, bottlenecks, not getting burned out etc,

not what their process is cal led. Maybe this is “just a bunch of smal l

Waterfal ls“, but that alone is hugely different from a Deathmarch, from our

customer’s, team’s and business perspective.

Our workflow here is just a snapshot of our process at the moment when

this was written. There are many lean and agile concepts that are built into

the process, l ike:

• One-piece flow (capacity set to 1, no set sprint length, team works

exclusively on one feature, even when it hurts)

• Need to balance the team (so we don’t get to the hurt part in #1),

• Pul l (customers say what is going to be worked on, not Marketing or

Management)

• Continuous integration and dogfooding (we start using a feature as soon

as it reaches level of usefulness for our team, usual ly weeks before it is

wel l rounded to be presented to customers)

• Waste reduction (part of the improvement process: take a bit of time to

think and discover waste, see if it can be removed, remove or reduce it,

learn)

• Focus on lead time and throughput (who cares how it is cal led, if it

del ivers customer demanded results twice as fast and gives you the

option to improve even further)

• Bottlenecks (find them, understand them, see how they affect the value

added work, address when needed)

So, if we have one takeaway, it’s this:

Nurturing a company culture that eliminates fear of change will make your

team better at what it does.

45

Whether you cal l it Scrum, Kanban or Lean doesn’t matter, as long as it

helps your company grow. Experimentation and innovation l ie at the heart

of any agile approach. Don’t be afraid to test different solutions, measure

results and, based on the results, modify existing practices. Good results wil l

fol low.

46

Case Study: Agile Reporting

When Active Col lab was starting out, I - I l i ja Studen, the cofounder of Active

Col lab - wore a lot of hats. My areas of responsibil ity were backend

development, customer support, blogging, community moderation, and

many other smal ler activities. With such a hands-on approach, it was hard to

let go of some of these things and let others do them instead. But it had to

happen, because it became obvious that my most impactful work no longer

took place in the trenches (even though I sti l l love the trenches).

First step: surround yourself with great people you enjoy working with. How

to find such people, direct them (and, even better agree on a direction) and

keep them, is a massive topic that we’l l get into in a series of blog posts

later this year. For now, let`s just assume that you managed to find them and

that they turned up for work next day. Can you real ly let go, get out of their

way, and leave them to do their best work?

In areas such as development, marketing, and customer care, I found a

method that worked real ly wel l : answer-oriented reports that are quick to

compile. They can be set up in Active Col lab as recurring tasks; col leagues

prepare them, and send them over to my partner and me. Apart from that,

I ’m mostly hands off and intervene only when I get asked for help, or notice

something strange.

Answers rather than raw data

Nobody ever told me that a report can be anything other than a massive

pile of data that you’re expected to draw conclusions from by yourself. I

a lways pictured reports as huge spreadsheets, ful l of data points and charts,

formulas and rainbow colors everywhere. The fact that I ’ve never worked

for an organization that was heavy on reporting helped this Hol lywood-style

image stick in my head for years.

Instead of raw data, reports should be focused on conclusions and

opinions.

47

While some of the reports that I get real ly are spreadsheets with charts,

formulas and rainbow colors, the ones I l ike best are the simple documents

that mix data points with bul let l ists and paragraphs of text that offer

conclusions, opinions and suggestions.

In such reports, the focus is shifted away from raw data, toward what we get

out of the raw data. I hate when someone just sends me a l ink to an article,

or an Excel fi le, and expects me to divert from what I was doing to focus on

something else, and then draw my own conclusions. Why does that very

same work need to be done twice – first by the person who read it through

and thought it might be of interest to me, and then again by yours truly?

When a new col league does that (old ones know me better than that), they

get a simple reply: “And?” or “What am I looking at here?”, but only if I ’m in a

good mood.

I love when people send me key data points alongside their own

conclusions and opinions...and the raw data that led them there is attached

as an extra file (that I may, or may not, open for further study). The same

goes for articles that cover the topic, or formulas used for calculations.

They’re great additions to the report, but it shouldn’t be necessary for me to

read or need them to get to the answers that report’s trying to

communicate.

Design answer-oriented reports

In order to get a report that doesn’t focus solely on data, but captures the

result of data analysis in a simple-to-digest form, you need to build it around

anticipated, possible answers, not the data itself. Here are some techniques

I used when I was designing a recent report:

Which questions do I want to have answered by this report?

Reports should give you answers, not mystify you and force you to figure

out what the data’s al l about. In order to get to these answers, start with

questions - the crucial questions that can be answered by studying data that

your systems and people are col lecting, l ike: “How engaging was the

content that we publ ished this month?” or “What was the team’s velocity

during this sprint?” or “What’s the churn rate during the month, and what are

48

the main churn causes?”

Reports should give you answers, not leave you even more puzzled then

you were before.

Structure things in such a way that you get the data (“Churn rate during May

was 2.5%, with 15 accounts, with $1500 MRR lost”) but so that you also get

opinions and conclusions from your col leagues (“Upon studying the data,

we found that main cause of churn remains X, yet we noticed that people

are also stating Y as a reason why they closed their accounts. Our

suggestion for how to approach this problem is to do Z.”).

How often do I need to check a report?

Some reports should be checked weekly, some monthly, some quarterly,

and some are yearly retrospectives. Start with the least frequent option that

you feel comfortable with. Later on, you can experiment with more, or less

frequent, reporting cycles to see what works best for you and your team.

Am I the only person who can prepare this report, or can I legate it to

someone else?

The answer should always be that you can delegate it to someone else. If

not, reshuffle things so that someone prepares the report for you.

How long will it take for this report to be completed?

Some reports take more time than others, but I always try to shoot for a

report to be completed in under 30 minutes. If your col league needs a day

or two to prepare a report for you, it’s pul l ing them from their actual work

way too much. Answers and conclusions are what’s important, so focus on

that. Also, consider as much automation for data col lecting and number

crunching as possible. There are some great tools out there that can help

your with report automation.

For example, you can use tools l ike Zapier to l isten to particular events from

al l sorts of apps and record these events as l ine items in Google Docs

spreadsheets. Then you can pul l the important data points from that

spreadsheet, instead of going to different tools and compil ing the data by

49

yourself.

Are we exceeding A3?

Toyota used to insist that al l reports fit a single A3 page. The reason was

simple and practical – A3 was the largest format that could easily be faxed

between Toyota employees. Apart from that physical l imitation, the folks at

Toyota also love brief and to-the-point reports. That’s why the A3 directive is

a good rule of thumb when figuring out how much info to fit into a single

report. While we don’t write or print our reports, I try to lay down the data in

my head on A3 paper, and cut the report if it can’t “fit.”

Should I store the reports for later use?

The reason I love wiki as a way to publ ish reports is because it helps you

build up your company’s knowledge base. With these reports, the

conclusions presented in them, and the discussions they sparked, can help

you induct new col leagues in the future and get to the “thinking behind,” so

you can disseminate you got to a process, not just the process itself.

When you’re designing your new report, consider whether it’s going to be

worth keeping, or if you’l l delete it once you’ve studied it. Some things can

be forgotten because they hold no lasting value (l ike the weekly Twitter

audience analysis report), but some wil l prove to be a valuable asset as they

pile up and build your knowledge base (l ike development sprint, or

marketing experimentation reports).

Implementing automated reporting

Now that you’ve got your l ist of questions that you want your team to

answer on a weekly or monthly basis, it’s time get things geared up so you

actual ly get them answered. Consult the person who’l l be preparing the

report, and explain the questions and thinking behind the question. They’l l

probably have comments and suggestions, and you should consider them

and improve the report.

Know that it’s human nature to go with the easiest possible route, so never

lose sight of your main objective (why you wanted this report in the first

50

place) when discussing technical implementation. Don’t just discard a

question because the data’s hard to col lect. Figure out a way to make it

easier, instead. Consider automation, adopting new products that can

produce the numbers that you need. Just don’t give up at the first hurdle.

I see a report as a way to extend our processes with a mandatory reflection

point on an important topic. As such, it brings value to the team preparing

and presenting the report, to the company itself (as a knowledge building

tool), and to you, as the business owner or manager. Take that into

consideration when you decide how the report wil l be prepared. If it’s hard

for you to take it in, it’s not going to be read (or watched). If it’s hard for

team to produce it in a timely fashion, it’s going to cost you more than the

value that you’l l get out of it. Avoid both traps, and go for something that’s

reasonably easy to prepare, yet you know you’l l give it your ful l attention

when it arrives in your inbox.

I see reports as a way to get insights, keep things on track and get myself

out of people’s way.

You’ve noticed by now that I l ike wiki as a way to get reports. That’s my

personal preference for some types of reports. I t goes hand-in-hand with my

goal to build Active Col lab into a company that col lects and nurtures our

col lective knowledge, instead of letting it disappear as time goes by. Some

reports that I get are Google and Excel spreadsheets or PDFs attached to

tasks that Active Col lab automatical ly creates and assigns to the team. That

works real ly wel l for reports that I don’t consider to be “knowledge

building.”

You may prefer something completely different, and you should go with

that. In the beginning, fancy tools are of l ittle relevance, and you should go

with something that’s convenient and easy.

When you pick the tool ing, try to create one report by yourself (with

assistance of the team, of course). I t’s okay if there’s a lot of manual work in

the beginning. By preparing a couple of reports manual ly, you’l l get a feel

for how much work goes into them, and what the general experience is. As

you get a feel for the process, try to improve on it by automating as much as

possible. Depending on the tools you’ve chosen, different options are

51

available: document templates, form builders, data aggregation tools….

If possible, keep in mind that 30-minute target. Some data points and

records may already be prepared (for example, incident reports, web traffic

analytics etc.) Putting these elements together, with brief conclusions,

should take no more than a half hour. Elaborating on conclusions, and

adding extra bits of information to present an opinion or suggest a course of

action may take as much time as needed after that. That’s the magic, so

don’t put a l imit on it!

Now that your team knows what kind of report they’l l be preparing for you,

and why, you’re ready to delegate it. Create a recurring task that assigns

the report preparation to a col league, sets the reporting frequency...and sit

back and wait for the first report to rol l in on the scheduled date.

Sprint report questions

We have a section in our company wiki cal led Control Tower, where project

managers l ist features, releases, and sprints that are under development.

Each big feature (that takes more than a month ti develop) is a separate

52

project. We develop them in biweekly sprints (l ike in Scrum).

After each sprint, the project manager creates a report that answers the

fol lowing questions:

What was the goal of the sprint?

Before the project kick-off, we set clear targets for each sprint's goal . Not al l

projects lend themselves the two-week timel ine, but they al l have

establ ished targets. Teams need clear goals, expected outcomes, and

timeframes so you can measure what you've achieved and test your

estimating skil ls.

Who managed the team and who did the work?

We record who manages the team and who is responsible for what parts of

the work. This helps us with performance reviews of the both project

managers and the developers. I t's also nice to check the wiki from time-to-

time and remind yourself how you contributed to the company’s growth.

How long was the sprint, in work days?

We restrict sprints to 10-12 days, plus two extra days for the kickoff and

retrospective. Days are recorded as actual dates, for future reference.

How many tasks did we plan to deliver? How many complexity points did

they have during the estimate?

During the kickoff, the team estimates how complex each task is in the

sprint. These are then used to gauge whether the workload can be actual ly

achieved in those two weeks. A project manager monitors the team’s

progress. If there's too much work, they remove some tasks from the sprint

and put them for the next sprint.

How many tasks were finished? What's their complexity score?

We measure velocity (how much work we finish) by adding up the

complexity points of each finished task. Only tasks that ful ly meet our

definition of done are taken into the account. Knowing your velocity is

important so you can better plan in the future. It's also an indicator of how

53

well we did our job.

What were the conclusions from retrospective?

We always hold a retrospective after each sprint and note the conclusions in

the team’s knowledge base. This way, we capture learned lessons for future

sprints and projects. This is especial ly helpful when someone new joins the

team. We give them to read every sprint report before starting to work so

they learn from our experience.

Which wiki articles were written or updated during the sprint’s urse?

With the pressure to del iver working software, documentation is often an

afterthought. But, it's extremely important because it helps us maintain

projects, especial ly the old ones. So, writing development documentation is

a mandatory part of the process. Al l new and updated documents are l isted

in the sprint report.

54

Real-world example of agile report

Here’s one of our sprint reports (numbers and descriptions have been

tweaked a bit to better il lustrate the point):

55

As you can see, a report is just a regular wiki page with a couple of tables,

l ists, and some conclusions gathered by the team immediately after the

sprint, while the memory is fresh.

But the real magic happens later on, when these report pile up. Then you

can see how well your team performs over time, when you underestimate

the work, etc. These reports are also very helpful when a new developer

joins the team so they can learn from our experience.

Agile reporting is great when you do it right. I t gives everyone a good point

of reference from the past, helps us plan future growth and make better

daily decisions, and prepares us on how to deal with chal lenging situations.

Working on your business, instead of in it is something that many of us

continue to struggle with. Don’t let that worry you – it’s a learning process

for everyone. Fol low the recipe above, and enjoy the insights you’l l get from

business reports that are actual ly important to you.

56

What Next

This guide covered the basics of agile project management. To learn more

about other aspects of project management and running a business, be

sure to check out our other books.

Kanban: A Quick and Easy Guide to Kickstart Your

Project

This book introduces Kanban and key principles of agile project management designed

to improve your productivity. The book is very short and is geared towards beginners.

The book wil l help you learn how to organize projects and how to introduce a simple

and rel iable process so you're more productive.

https://activecollab.com/project-management-guides/kanban-ebook?utm_source=ebook&utm_medium=pdf&utm_campaign=agile&utm_content=next

The Complete Guide to Managing Digital Projects

This book dives deep into project management. I t covers everything from client

col laboration and project management to invoicing and time tracking.

The book wil l teach you everything you need to know to successful ly manage digital

projects, get paid, and make your cl ients happy. Unl ike the Kanban ebook, this wil l take

you much longer to read but it's sti l l very easy to understand.

https://activecollab.com/project-management-guides/managing-digital-projects-ebook?utm_source=ebook&utm_medium=pdf&utm_campaign=agile&utm_content=next

Essential Tools for Running a Business

Every growing business needs tools. This book l ists every tools that helped us grow our

company from 3 to 30 people (and beyond). We share behind-the-scenes insight, how

we use every app, and how each app can help YOU become more productive. Every

tool is i l lustrated with screenshots so you can see how it works.

https://activecollab.com/project-management-guides/tools-ebook?utm_source=ebook&utm_medium=pdf&utm_campaign=agile&utm_content=next

GROWTH: Everything You Need to Know Before You Can

Grow Your Business

Growth is a double-edged sword. It's good if you are prepared and know what you are

getting into, but terrible if you aren't ready. The book covers everything you need to

know to avoid mistakes business owners commonly make when growing their smal l

business.

https://activecollab.com/project-management-guides/growth-ebook?utm_source=ebook&utm_medium=pdf&utm_campaign=agile&utm_content=next

https://activecollab.com/?utm_source=ebook&utm_medium=pdf&utm_campaign=agile&utm_content=about

